Genetic basis of neural tube defects. II. Genes correlated with folate and methionine metabolism.

نویسندگان

  • Monika Gos
  • Agnieszka Szpecht-Potocka
چکیده

Effective supplementation with folate, which prevents neural tube defect (NTD) occurrence, and high homocysteine levels in the blood of NTD children's mothers suggest that genes involved in folate and homocysteine metabolism can be involved in NTD aetiology. Genes encoding methylenetetrahydrofolate reductase (MTHFR) or methylenetetrahydrofolate dehydrogenase (MTHFD) belong to the first group. Genes encoding methionine synthase (MTR), its regulator - methionine synthase reductase (MTRR) and also cystathionine synthase (CBS) can be included in the second group. We present a current list of the folate and homocysteine metabolism genes that are known to be involved in NTD and pay special attention to primary and secondary NTD prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embryonic folate metabolism and mouse neural tube defects.

Folic acid prevents 70 percent of human neural tube defects (NTDs) but its mode of action is unclear. The deoxyuridine suppression test detects disturbance of folate metabolism in homozygous splotch (Pax3) mouse embryos that are developing NTDs in vitro. Excessive incorporation of [3H]thymidine in splotch embryos indicates a metabolic deficiency in the supply of folate for the biosynthesis of p...

متن کامل

Acquired and inherited disorders of cobalamin and folate in children.

Cobalamin deficiency in the newborn usually results from cobalamin deficiency in the mother. Megaloblastic anaemia, pancytopenia and failure to thrive can be present, accompanied by neurological deficits if the diagnosis is delayed. Most cases of spina bifida and other neural tube defects result from maternal folate and/or cobalamin insufficiency in the periconceptual period. Polymorphisms in a...

متن کامل

Genetic basis of hyperhomocysteinemia.

Homocysteine is a sulfur-containing, nonproteinogenic amino acid biosynthesized from methionine which has a key place in common between the folate cycle and the activated methyl cycle. Homocysteine export into the extracellular medium reflects an imbalance between homocysteine production and metabolism (1). Hyperhomocysteinemia has been associated with folate or cobalamine deficiencies, and als...

متن کامل

Neural Tube Defects and Folate Pathway Genes: Family-Based Association Tests of Gene–Gene and Gene–Environment Interactions

BACKGROUND Folate metabolism pathway genes have been examined for association with neural tube defects (NTDs) because folic acid supplementation reduces the risk of this debilitating birth defect. Most studies addressed these genes individually, often with different populations providing conflicting results. OBJECTIVES Our study evaluates several folate pathway genes for association with huma...

متن کامل

Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure

Abnormal folate one-carbon metabolism (FOCM) is implicated in neural tube defects (NTDs), severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied genetics

دوره 43 4  شماره 

صفحات  -

تاریخ انتشار 2002